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Abstract: We proposed a new approach to solving the problem of operational analysis and medium-
term forecasting of the greenhouse gas generation (CO2, CH4) intensity in a certain area of the
cryolithozone using data from a geographically distributed network of multimodal measuring
stations. A network of measuring stations, capable of functioning autonomously for long periods
of time, continuously generated a data flow of the CO2, CH4 concentration, soil moisture, and
temperature, as well as a number of other parameters. These data, taking into account the type of
soil, were used to build a spatially distributed dynamic model of greenhouse gas emission intensity
of the permafrost area depending on the temperature and moisture of the soil. This article presented
models for estimating and medium-term predicting ground greenhouse gases emission intensity,
which are based on artificial intelligence methods. The results of the numerical simulations were
also presented, which showed the adequacy of the proposed approach for predicting the intensity of
greenhouse gas emissions.

Keywords: CO2; CH4; hydrocarbon emission prediction; multimodal sensor; machine learning;
XGBoost

1. Introduction

It is known [1–4] that due to climate change, much of the organic CO2 and CH4
that are conserved in the cryolithozone ecosystem can be released. For example, colossal
reserves of organic CO2 and CH4 are mothballed in permafrost peatlands. For the time
being, the factor of the release of these conserved CO2 and CH4 is significant and should
be taken into account in a measures set, which is aimed to compensate for the effect of
greenhouse gas emissions. In order to take this factor into account, it is necessary to have
a formal method and tools in order to make adequate medium-term forecasts for the
amounts of CO2 and CH4 generated in specific areas of the permafrost region. Relatively,
few works have been devoted to the description of greenhouse gas emission processes in
the cryolithozone, most of which are not aimed at quantitative prediction of greenhouse gas
emission intensity with reference to specific territories [5–10]. These works mainly estimate
the potential hydrocarbon and methane reserves in different areas of the cryolithozone and
describe the mechanism of greenhouse gas generation. For example, it is pointed out that
the intensity of the process of greenhouse gas emission in the cryolithozone depends on
the soil temperature and humidity, as well as on its biological composition. At the same
time, no attempt is made to solve the problem of predicting the quantitative dynamics of
greenhouse gas release from the soil of the cryolithozone, depending on various scenarios
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of soil temperature and moisture changes. In these works, no mathematical model of
greenhouse gas generation has been made and no instrumental means have been proposed
for measuring the parameters included in these models.

At the same time, researchers engaged in forecasting the intensity of greenhouse gas
generation in the cryolithozone need a methodology and appropriate tools that would
allow, in a clear reference to specific territories, quick generation of quantitative estimates
of the intensity of greenhouse gas generation in these territories, depending on various
scenarios of changes in the average temperature and humidity in these areas. Hence, this
work aimed to develop a new method for the operational analysis and medium-term
forecasting of the intensity of greenhouse gas generation in the cryolithozone, as well as to
formulate requirements for the tools that will provide the developed method with adequate
data. The approach proposed in the present work is intended for operative surveillance of
the process of greenhouse gas emission within a specific territory, as well as for determining
medium-term forecasts of this emission quantity. The method and instrumental means
which provide this analysis are described. The contribution of this paper is given below.

• The data-driven predictive model is based on artificial intelligence methods and
designed for operational estimation as well as for the formation of a forecast of the
spatial concentration of greenhouse gases. This model allows for more accurate
quantitative predictions of greenhouse gas generation because it relies on directly
linking the measurements used to build the model to the measurement locations. This
model is constantly being refined, literally at the rate of new data, and therefore takes
into account the gradual depletion of hydrocarbon reserves in the soil, as well as this
refinement gradually compensating for the a priori inaccuracy of hydrocarbon maps.

• The proof of the proposed predictive model adequacy was carried out in the form of
numerical simulations with usage of a specialized data set.

• The proof of existence of a sustainable regression model that binds the value of
intensive CO2 production with the temperature and soil moisture was produced by
numerical simulation.

The rest of this document is organized as follows. Section 2 presents related works.
Section 3 describes a new method for predicting the intensity of greenhouse gas generation
in the cryolithozone. Section 4 is the most important section of this paper and it contains
the results of numerical testing of the possibility for a qualitative approximation of the
greenhouse gas intensity value as a regression function from the arguments “soil mois-
ture” and “soil temperature”. Section 5 concludes the paper with brief conclusions and
suggestions for future research on this topic.

2. Related Work

As indicated in the previous section, most of the scientific papers devoted to the
analysis of the process of greenhouse gas emissions in the cryolithozone are not aimed at
quantitative prediction of the intensity of these emissions in relation to specific territories.
An exception is the work [11], which made a very interesting attempt to quantitatively
analyze the process of greenhouse gas emission in the cryolithozone. It was assumed that
carbon reserves during freezing do not decompose, and after thawing they are released
with intensity, the dynamics of which are described by some function which depends on
the soil temperature. The soil type was taken from the soil atlas, where the data were
approximate. In general, this interesting model relied on a number of static assumptions
and did not examine the process of hydrocarbon release in cryolithozone as a dynamic
process. So, this approach was intended as a rough estimate of the permafrost carbon-
climate feedback and, as a result, a simplified potential hydrocarbon release estimate
was formed. A characteristic feature is also the fact that not all key parameters affecting
the generation of greenhouse gases were subjected to research. In addition, this work
did not describe a hardware system designed both for operational measurement of soil
parameters (temperature and humidity), and for controlling the intensity of greenhouse
gas emission flux, as the problem statement did not require it. As a matter of fact, in the
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paper [11] presented an approach to estimating greenhouse gas emissions from large-scale
permafrost melting, which is based on the use a simplified three-component model. This
model combines three main elements: (a) maps and profiles of soil carbon (C) distribution
in permafrost soils [12,13]; (b) incubation experiments to quantify the rate of C loss during
thawing; and (c) models of soil thermal dynamics in response to climate warming. Phase
(b) creates data sets containing digitized data that characterize the relationship of carbon
generation intensity with soil type and temperature gradient. The authors called this
approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach
(PInc-PanTher). In general, this approach allows us to form a rough potential estimate of
greenhouse gas emissions in specific areas of the cryolithozone without taking into account
the depletion of soil hydrocarbon reserves and without considering the heterogeneity of
hydrocarbon concentrations in specific soil areas. This approach is based entirely on soil
atlases, so the accuracy of its prediction is largely determined by the accuracy of the atlas.
However, this accuracy is not good enough.

Unlike PInc-PanTher, the approach proposed in this paper was based on a data-driven
methodology that allows elements (a) and (b) to be information-assembled in a single
phase. This phase simultaneously collects information of soil parameters and greenhouse
gas generation, and builds and continuously refines a model that relates greenhouse gas
emission rates to a group of objectively measurable parameters, such as soil moisture, soil
temperature, and time. A nonparametric regression is considered as a model, and as its
parameters, the type of soil in which the sensors of the measuring multimodal station are
immersed. This regression was approximated based on artificial intelligence methods, in
particular, using boosting methods. The soil type, which is considered as a parameter of this
model can be obtained, for example, from soil atlases with classification of soil types [12].
In this case, there is no need to use soil carbon maps [13], which, like soil atlases, are rather
approximate. In the framework of the proposed approach, the accuracy of the hydrocarbon
map is uncritical. The fact is that the parameter “soil type” in the measurement points is
used only at the moment of system installation, when a previously improved model is
used for the forecast. Then, the model is improved and refined without reference to the
soil atlas, but with reference to the geographical locations of the measurement stations.
Thus, the data-driven approach used in this work allows us to quickly compensate for
inaccuracy of hydrocarbon maps, as the system will be constantly improved and refined as
new measurements and data arrive, which will be obtained in 24/365 mode. The model
can be refined in various ways, the simplest of which is to take into account the newly
obtained data to refine the regression reconstruction. Gradually, when a sufficient amount
of data are accumulated at each location of multimodal measuring stations, the constructed
regression will depend more on the observed data rather than on the initial information
about the soil type, which may not be quite accurate. Thus, a gradual decrease in the
intensity of greenhouse gas generation as the hydrocarbon content of the soil is depleted
can also be taken into account. In principle, as a regression parameter, the data on the soil
carbon map can also be used, but it is not critical. The main thing is that the model of
greenhouse gas generation is based on a clear territorial reference to the nodes in which
the measuring stations are installed. The data from these nodes are used to make the target
regression, linking the independent variables (time, temperature, and humidity) with the
target parameter: the intensity of greenhouse gas emissions at specific points. Thus, this
approach is based on the use of data from a specific territory, which are constantly updated
and refined, which makes the proposed approach, theoretically, more accurate.

3. Method

A spatially distributed system of multimodal measuring stations (multimodal measur-
ing station MMS) located at points of X = {Xi|i = 1, . . . N} in which precise measurements
of the thermal and moisture fields of the soil were made is given. Each MMS includes a
garland of sensors of various modalities, some of the sensors are buried in the ground, and
the sensors of greenhouse gas emission and the communication and information transfer
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system remain on the surface. The entire controlled area was divided into a system of
adjacent prisms, Ω(j), j ∈ J, Ω =

⋃
j∈J

Ω(j), whose height is equal to the depth of control of

the temperature and moisture fields, and, in fact, the depth of immersion of multimodal,
sensor garlands into the soil. This set of prisms is called the MMS placement grid and
was used to construct the resulting forecast of the emission intensity of the controlled area.
The vertical axes of the MMS garlands were used as prism Ω(j) edges. Figure 1 shows
an image of a prism of multimodal sensor stations, the edges of which are multimodal
sensor stations with the indices i, i + 1, and i + 2. Marker “1” stands for the controller
with a self-contained power supply and LoRaWAN wireless data transfer module, “2” for
greenhouse gas emission intensity measurement module, “3”, “4”, and “5” for humidity
and temperature measurement modules, and “6” for the base that fixes the station in the
well. The figure has a schematic character, and in a real version the number of temperature
and humidity measurement modules can reach 10–15 units. The indices of the measuring
stations, which are located on the faces of this prism, form a set ω(j), |ω(j)| = 3.

Let (t, Xi) = (T(t|Xi), rH(t|Xi)) be the measurement made by the i-th station at the
time t ∈ T, T is a set of moments of measurements of the earth’s physical fields: thermal
and moisture, T(t|Xi) is the temperature of the soil at the time t ∈ T, averaged over the
space of the measuring cylinder (the geometric location of the underground multimodal
garland), and rH(t|Xi) is the soil moisture measured at time t ∈ T and averaged over the
measuring cylinder space. As an auxiliary problem, the problem of finding regression
functions of the following kind is solved:

Igg(t|Xi) = Fgg((t, Xi)|Soil_Type(Xi)).

Here, Igg(t|Xi) is the intensity of greenhouse gas emission; gg is an index of a greenhouse
gas type, gg ∈ {“CO2”, “CH4”}; Xi is a point in space; and Soil_Type(Xi) is the soil type
at the point of space Xi, according to the soil atlas. Examples of soil types include: gelisols,
pistosols, alfisols, entisols, Inceptisols, spodosols, oxisols, etc. Nonparametric approximations
for Fgg((t, Xi)|Soil_Type(Xi)) functions were constructed and refined in real time, using
the data set from the MMS grid. According to the measurement data from the MMC grid,
gradually, a full BigData Set was formed, which was used for high-quality approximation of
Fgg(·) regressions, which we denote by Fgg(·). A detailed description of this approximation,
as well as the results obtained, is given in the next section of the article. It is assumed that the
intensity of greenhouse gas generation measured by the sensors of the multimodal station
is generated by an area of soil that is immediately adjacent to the installation point of the
station. The area of this plot S(Xk) is not known a priori, although it is quite small: ∀j, k ∈
ω(j) : S(Xk) << Ω(j). For simplicity, suppose that ∀j, k ∈ ω(j) : S(Xk) = S = const and
S(Xk) have the shape of a circle centered at point Xk. The value of S must be estimated
a priori in the process of additional research. In this case, to estimate the greenhouse
emission intensity at point Xi, we use a simple correction function: IC

gg(t|Xi) = Igg(t|Xi)/S.
To approximate the values of Igg(t|·) at points x ∈ Ω\X for any prism Ω(j), approximation

I(j)
gg (t|x) is used, for which the following notation is true:

∀x ∈ Ω(j) ⊆ Ω : I(j)
gg (t|x) = ∑k∈ω(j) IC

gg(t|Xi) · λ(x, k),

λ(x, k) = ‖x− Xk‖ ·
(

∑k∈ω(j) ‖x− Xk‖
)−1 (1)

Thus, we have an opportunity to estimate temperature, humidity, and greenhouse
gas emission levels at any point x ∈ Ω of the controlled space of the cryolithozone. Let
Tpr = (to, to + ∆T); to, ∆T > 0 be the time prediction interval. Taking into account (1), an
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estimate of the value of greenhouse gas emissions of type gg Igg(Tpr|Ω) for the region
forecasting Ω, can be determined in the following way:

Igg(Tpr|Ω) = ∑j∈J

∫
Ω(i)

∫
∆T

I(j)
gg (t|x)dtdx (2)

In practice, the Riemann integrals in (2) are calculated numerically.
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4. Results

In this section, we present the results of numerical simulations, which prove the
possibility of qualitative approximation of the regression function Fgg(·). The fact is that
a qualitative approximation of this regression function is the basis for the success of the
proposed forecasting technique. Numerical experiments were performed on the data set,
which was collected under real conditions.

4.1. Description of the Data Set and Conditions for Numerical Studies

To check the possibility of constructing a qualitative approximation of the regression
function Fgg(·), for gg = “CO2”, the data set “Soil CO2 Flux, Moisture, Temperature, and
Litterfall” [14], which contains data on the intensity of soil CO2 emission depending on
temperature, soil moisture, and soil type, was selected. These data contain measurements
of CO2 emission rates, soil moisture, relative humidity, temperature, and litterfall from six
types of tree plantations at the La Selva Biological Station, Costa Rica. All measurements
were made (1) hourly during 2-day field campaigns and (2) as single daytime measurements
during multiple survey campaigns, over the period 2004–2010. All measurements were
made at the same sites with three to five measurements per plot. The experimental design
included four randomized blocks composed of twelve 50-m × 50-m plots, each of which
originally contained a single tree species. Four replicate plots of six plantation types, a total
24 plots, were included in this study. Obviously, the intensity of CO2 emission depends
not only on temperature and moisture, but also on soil type, which largely determines
the level of saturation of soil layers with C, and also determines the ability of soil to
generate CO2. The process of CO2 generation by soil is multifactorial, including both
reverse absorption of CO2 by the soil, and an increase in the generation of CO2 depending
on the state of the whole complex of biochemical processes, which have a clearly expressed
diurnal periodicity.

In this section, the task was to test the hypothesis that knowing the temperature of a
particular soil area, its moisture content, and soil type; it is possible to predict the intensity
of CO2 generation in this area with a fairly high accuracy. Data set “Soil CO2 Flux, Moisture,
Temperature, and Litterfall” contains data on the intensity of soil CO2 emission (parameter
“CO2_Flux_Exp”, number of micromoles of CO2 per m2 per 1 s) depending on a group
of parameters, including the temperature (parameter “Tsoil”) measured at two depths of
5 cm and 10 cm (parameter “z(Tsoil)”), the type of vegetation at the measurement location
(four varieties), the relative humidity (parameter “RH”, %), and the H2O content in 1 cm3

of soil at 12 cm depth, expressed as a percentage (parameter “Soil_H2O”). Let us call a
particular realization of this group of parameters a parametric point. The parameters date
and time of the measurement as well as several characteristics of the measurement location
were also available and used. The generalized soil type in the test region should be referred
to the “oxisols” type. Unfortunately, almost 97% of the values of this parameter in the
data set were corrupted and equal to the same value, −9999. However, the “alphabetic
code for the planted tree species” parameter was clearly defined for each place where
“CO2_Flux_Exp” parameter was measured. Each type of planted tree leaves a correspond-
ing type of foliage in the soil. The foliage, in the process of its decomposition, contributes
significantly to the generation of greenhouse gases. Thus, the parameter “planted tree
type code”, to a certain extent, replaces the parameter “soil type”, which turned out to
be unavailable for the numerical study. The values of the parameter “alphabetic code for
the planted tree species” referenced in the following text of the article have the following
values: HIAL is Hieronyma alchorneoides; PEMA is Pentaclethra macroloba; PIPA is Pinus
patula subspecies tecunumanii; VIKO is Virola koschnyi; VOFE is Vochysia ferruginea;
and VOGU is Vochysia guatemalensis. It was found that there is quite a significant rela-
tionship between the parameters RH and Soil_H2O: Spearman rank correlation coefficient
between the available samples of these parameters was 0.52 (p-value = 1.18 × 10−6), and
Pearson correlation coefficient was 0.48 (p-value = 7.62 × 10−8). That is, there is a correla-
tion between “RH” and “Soil_H2O” values, albeit a weak one. Thus, “RH” characterizes



Atmosphere 2021, 12, 1466 7 of 19

“Soil_H2O” to a certain extent, and this fact, in general, is consistent with the general
physical ideas about the process of moisture transfer from air to soil and back. Since the
“suitable” measurements of parameter “Soil_H2O” (102 pieces) turned out to be insuffi-
cient for the qualitative construction of the regression function Fgg(·), it was decided to
exclude the use of this parameter completely, assuming that its properties are partially
reflected in the “RH” parameter. The results of numerical simulation fully confirmed the
assumption made.

Additionally, the statistical dependence between the parameters of intensity of soil
CO2 emission (“CO2_Flux_Exp” parameter) and soil temperature was rather weak. For
example, the Spearman rank correlation coefficient was only 0.17 (p-value = 0.1), although
physically this relationship certainly exists. The point is that the relationship function of
these quantities additionally depends on a group of other parameters. Approximation of
this function, taking into account the group of additional parameters, was one of the tasks
of this study.

As already mentioned, the process of CO2 emission depends to a large extent on the
type of soil, and hence on the place where it is measured. In addition, the time of day has a
certain influence (daylight plays a significant role in photosynthesis processes). All these
facts were taken into account in the process of approximation of the regression function
Fgg(·). A group of computational experiments was carried out. All experiments followed
the same scheme, which was designed to provide high generalizability:

• Approximation method: GBR (Gradient Boosting Regression) [15].
• The available data set was always divided into two parts: the power of the first part

70%, and the power of the second part 30%. The first part was used for regression
reconstruction, and the second part for testing. This was carried out in order to
increase the generalizability of the approximation function. All results that summarize
specific experiments always correspond to the test part of the sample only, according
to the principle of cross validation.

• Several standard metrics were used to control the quality of approximation, includ-
ing: MSE (mean squared error), explained_variance_score (explained variance regres-
sion score function, best possible score is 1.0, lower values are worse), max_error
(maximum residual error), mean_absolute_error (mean absolute error regression loss),
mean_squared_error (mean squared error regression loss), and r2_score (coefficient of
determination regression, best possible score is 1.0). The metric r2_score was considered
as dominant.

The regression function was reconstructed at different time intervals for different types
of vegetation. In the graphs in Figures 2–5, the numbers of parametric points are plotted
on the x axis (abscissa axis), each of which corresponds to a particular realization of a
group of parameters (air temperature, relative humidity, etc.) On the x axis, the parametric
points are arranged in ascending order of the moments of time at which these points were
measured. This sequence of time moments is an irregular time series.

4.2. A Description of the Experimental Conditions and the Results Obtained in These Experiments

In the next group of experiments, the possibility of a qualitative approximation of the
Fgg(·) function was tested for each vegetation type. The quality of Fgg(·) approximation
was also checked for the case where the data set contained measurements from spatial
points with different vegetation types. After approximation for Fgg(·) regression was built,
its behavior in dependence on “soil temperature” and “soil moisture” parameters was
checked. The behavior of Fgg(·) should be consistent with theoretical assumptions. Since
the main soil characteristic used in this series of experiments is almost entirely determined
by the type of vegetation that grows at the measurement location, we, for simplicity, used
the vegetation code as the soil type characteristic. For example: “Soil Type: PEMA”.
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4.2.1. Experiment 1

The objective of the experiment was to test the quality of the approximation of the
Fgg(·) regression on daily data for PIPA vegetation type. Soil temperatures were measured
at a depth of 10 cm. For each parametric point, the soil temperature at the time of mea-
surement belongs to the interval (22 ◦C, 26 ◦C). Number of parametric points: 200. The
approximation quality parameters are given in Table 1, and the result of the approximation
is shown in Figure 2. Overall, it can be concluded that the quality of the approximation
reflected in Table 1 is quite satisfactory.

Table 1. The results of experiment 1.

Criterion Value

r2_score, 1 0.722
explained_variance_score, 1 0.722

max_error, µmol m−2 s−1 1.052
mean_absolute_error, µmol m−2 s−1 0.279

MSE, (µmol m−2 s−1)2 0.140
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4.2.2. Experiment 2

Here, we checked the quality of the approximation of the regression Fgg(·) on daily
data for HAIL vegetation type. The soil temperature was measured at a depth of 10 cm.
For each parametric point, the soil temperature at the time of measurement belongs to
the interval (22 ◦C, 26 ◦C). Number of parametric points: 200. The approximation quality
parameters are given in Table 2, and the result of the approximation is shown in Figure 3.
The approximation quality is comparable to the approximation quality from experiment 1.
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Table 2. The results of experiment 2.

Criterion Value

r2_score, 1 0.722
explained_variance_score, 1 0.722

max_error, µmol m−2 s−1 2.203
mean_absolute_error, µmol m−2 s−1 0.491

MSE, (µmol m−2 s−1)2 0.486
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4.2.3. Experiment 3

In this experiment, the quality of the Fgg(·) approximation was tested for the VIKO
vegetation type. The soil temperature was measured at a depth of 10 cm. For each
parametric point, the soil temperature at the time of measurement belongs to the interval
(22 ◦C, 26 ◦C). Number of parametric points: 200. The approximation quality parameters
are given in Table 3, and the result of the approximation is shown in Figure 4. The
approximation quality is very good.

Table 3. The results of experiment 3.

Criterion Value

r2_score, 1 0.897
explained_variance_score, 1 0.899

max_error, µmol m−2 s−1 1.019
mean_absolute_error, µmol m−2 s−1 0.292

MSE, (µmol m−2 s−1)2 0.125
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4.2.4. Experiment 4

Here, we worked with the PEMA vegetation type. Temperature measurement depth
was 10 cm. The approximation quality parameters are given in Table 4, and the result of
the approximation is shown in Figure 5.

Table 4. The results of experiment 4.

Criterion Value

r2_score, 1 0.878
explained_variance_score, 1 0.878

max_error, µmol m−2 s−1 0.845
mean_absolute_error, µmol m−2 s−1 0.179

MSE, (µmol m−2 s−1)2 0.0623
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4.2.5. Experiment 5

In this case, approximation was carried out for all vegetation types from the ob-
servation area, including HIAL, PEMA, PIPA, VIKO, VOFE, and VOGU. Temperature
measurement depth was 10 cm. For each parametric point, the soil temperature at the
time of measurement belongs to the interval (22 ◦C, 26 ◦C). Number of parametric points:
500. The approximation quality parameters are given in Table 5, and the result of the
approximation is shown in Figure 6.

Table 5. The results of experiment 5.

Criterion Value

r2_score, 1 0.793
explained_variance_score, 1 0.795

max_error, µmol m−2 s−1 1.447
mean_absolute_error, µmol m−2 s−1 0.225

MSE, (µmol m−2 s−1)2 0.102
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Further, the properties of this regression Fgg(·) were investigated, particularly the
sensitivity of the model to the parameters of soil temperature (“Tsoil”) and relative humidity
(“PH”). These studies were formalized in the form of the following experiments.

4.2.6. Experiment 6

The purpose of this experiment was to study the behavior of CO2 flux intensity as a function
of temperature (“Tsoil”) within the framework of the previously constructed approximation
Fgg(·). The approximation F(5)

gg [·] from experiment 5 was used. The regressor “Tsoil” (or T)
growth rate was 0.1 ◦C. Initial value of parameter T was 23.7 ◦C. Let us denote the dataset that we
used in this experiment as DS = {(Soil_CO2_Fluxi, Ti, rHi, Soil_Type(Xi))i| i ∈ {1, . . . N}}.
Here, i is index of record, to which correspond values Soil_CO2_Fluxi (CO2 emission rate),
and Ti, rHi, Soil_Type(Xi), Xi respectively are soil temperature, relative soil humidity, and
soil type at measuring point Xi. F(5)

gg [T|rH, Soil_Type(X)] is the approximation that was
obtained in experiment 5. The result of this experiment is shown in Figure 7.
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Figure 7. Results of experiment 6. Dependence of CO2 flux rate on soil temperature.

The main point is the “Averaged and Smoothed CO2 Flux” Chart. This function
describes the tendency of the Soil_CO2_FluxSA(T) value to change with temperature
averaged over a set of auxiliary parameter {(rH, Soil_Type(X))i} values. The function
“Averaged and Smoothed CO2 Flux” Soil_CO2_FluxSA(T) has the following form:

Soil_CO2_FluxSA(T) = ∑N
i=1

Fgg[T|rHi, Soil_Type(Xi)]

N
.

The second chart is given for an example of a typical CO2 flux forecast imple-
mentation when we use only one regressor: the temperature. In this case, a function
F(5)

gg [T|rHi, Soil_Type(Xi)] corresponds to a randomly chosen index 1 ≤ i ≤ N. The graph
shows that the CO2 emission rate is a monotonically increasing function of temperature.
This is quite consistent with the physical meaning of carbon dioxide emission process.
Thus, in this sense, the approximation built for Fgg(·) is quite adequate:

4.2.7. Experiment 7

Similarly, with the conditions of experiment 6, the purpose of this experiment was
to study the behavior of CO2 flux intensity as a function of relative humidity (rH). The
approximation F(5)

gg [pH|T, Soil_Type(X)] from experiment 5 was used. The regressor rH
growth rate was 1%. Initial value of parameter rH was 70%. The result of this experiment
is shown in Figure 8.
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Figure 8. Results of experiment 7. Dependence of CO2 flux rate on relative humidity.

As in experiment 6, the main point is the “Averaged and Smoothed CO2 Flux” chart.
In this case, the function “Averaged and Smoothed CO2 Flux” Soil_CO2_FluxSA(rH) has
the following form:

Soil_CO2_FluxSA(rH) = ∑N
i=1

Fgg[rH|Ti, Soil_Type(Xi)]

N
. (3)

As before, the second graph is given for an example of a typical CO2 flux forecast
implementation when we use only one regressor: rH. A function F(5)

gg [rH|Ti, Soil_Type(Xi)]
corresponds to a randomly chosen index 1 ≤ i ≤ N. Here, the CO2 emission rate is a
monotonically increasing function of relative humidity. This makes perfect sense physically.
Thus, the approximation Fgg(·) is quite adequate in this sense too.

4.2.8. Experiment 8

The objective of this experiment was to confirm that model (Fgg(·)) shows a monotonic
dependence of the CO2 flux intensity on a simultaneous increase in both soil temperature
(“Tsoil” or T) and soil relative humidity (rH). The approximation F(5)

gg [T, pH|Soil_Type(X)]
from experiment 5 was used (the same as in experiments 6 and 7). The regressor rH growth
rate was 1%. Initial value of parameter rH was 70%, and the regressor Tsoil (or T) growth
rate was 0.1 ◦C. Initial value of parameter T was 23.7 ◦C. The results of this experiment are
shown in Figure 9.
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The function “Averaged and Smoothed CO2 Flux” Soil_CO2_FluxSA(T, rH) has the
following form:

Soil_CO2_FluxSA(T, rH) = ∑N
i=1

Fgg[T, rH|Soil_Type(Xi)]

N
.

Here, the second chart is given for an example of a typical CO2 flux forecast implemen-
tation when we use both regressors: T and rH. Here, function F(5)

gg [T, rH|Soil_Type(Xi)], as
before, corresponds to a randomly chosen index 1 ≤ i ≤ N. Here, the CO2 emission rate
increases monotonically with a simultaneous increase in both the soil temperature and rela-
tive soil moisture. This fact is fully consistent with both the theory of the greenhouse gas
emission process and the practice of field observing this process. Thus, the approximation
Fgg(·) is quite good.

5. Discussion on Numerical Simulations Results

The constructed regression approximation (Figures 6–8), which relates the intensity
of soil CO2 emission with the dynamics of the parameters soil temperature and relative
humidity, are in good agreement with the physicochemical models of soil CO2 generation.
In particular, at relative humidity of 82%, the intensity of ground CO2 emission was
5.1 micromol CO2 per m2 per 1 s, and at relative humidity of 75%, respectively, the intensity
of ground CO2 emission was somewhat reduced to 4.8 micromol CO2 per m2 per 1 s. With
a simultaneous increase in both soil temperature (up to 26 ◦C) and relative humidity (up
to 90%), the intensity of soil CO2 emission increased to the value of 6.2 micromoles of
CO2 per m2 per 1 s. As a result of numerical experiments on data set “Soil CO2 Flux,
Moisture, Temperature, and Litterfall” [14], the possibility of the effective application of
modern methods of data analysis and machine learning for approximation of the regression
dependence of the parameter “intensity of soil CO2 emission” on regressor values of “soil
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temperature”, and also on moisture parameters and soil type, was confirmed. The results
of the approximation were in good agreement with the physicochemical models of the
process of soil CO2 generation. Thus, the investigated approach to approximating the
intensity of soil CO2 can be effectively used in the problems of predicting the generation
of soil CO2 from the data obtained from a network of spatially distributed multimodal
sensors, considering that an atlas of soil types in the region of prediction construction is
available. Thus, the numerical study which was carried out has high confidence. Based on
this confidence, the approximation of Fgg(·) is sufficiently effective practically, and we can
consider that a measurement set of (a) soil temperature, (b) soil moisture, and (c) known
soil type at the measurement site is quite sufficient to solve the problem of greenhouse
gas prediction.

6. Multimodal Measuring Stations (Multimodal Sensor Network) Requirements

Thus, as a result of modeling, it was possible to formulate the following requirements
for the composition of the measuring station, as a unit of a multimodal sensor network:

1. Each station must contain sensors for measuring CO2/CH4 flux, soil temperature,
and soil moisture.

2. The top-level data processing system, where information from the sensor network is
collected, must contain information about the exact coordinate of the measurement
points and about soil types at the measuring stations locations.

At the same time, the data-driven approach to reconstruct the Fgg(·) function allows,
in the mode of constant consideration of new incoming data, the gradual reduction of
the dependence of the model on the soil atlas data (they may be inaccurate). After a
certain interval of time, taking into account the array of measurements made, the model
will be fully linked to a specific measurement point, and the measured data will have a
significantly greater influence than the information from the soil atlas.

The effective solution of the operational analysis task and medium-term forecasting
of greenhouse gas generation intensity, set in Sections 1–3, is ensured by the application
of adequate instrumental support. In our case, this requires the creation of a network of
multimodal stations, which transmit a continuous flow of data to remote processing centers
and which can operate in long-term autonomous mode (Figure 10).
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7. Conclusions

The proposed approach in this work to the control and forecasting of the processes
of greenhouse gas emission implies the combined use of special instrumental means,
operating in autonomous mode, as well as original methods for quantitative forecasting
of greenhouse greenhouse gas emissions from a specific geographic area of the controlled
territory during the forecast period. This system is a network of geographically distributed
multimodal sensor stations designed to measure the intensity of greenhouse gas emissions
(carbon dioxide and methane) from the surface of the controlled territory. This network is
considered a low-maintenance and autonomous system in terms of energy supply, which
means that each multimodal station is powered by a battery, the capacity of which provides
for up to several years (more than five) of autonomous operation. The data set was obtained
as a result of the functioning of this network, which, in turn, was used to train (calibrate)
the predictive component of the system.

The numerical modeling proved that the mathematical methods underlying the prog-
nostic component of the proposed system are practically effective for prognostic problems
solution in question.

The proposed model was set up on a data set that was collected in the tropics. In
this data, the soil temperatures varied in the range 22–26 ◦C. At high latitudes, soil CO2
emission occurred during the warm season: June–September. During this period, at a
depth of 15–20 cm, the temperature varied in the range 5–12 ◦C [16]. At shallower depths
(0–5 cm), the temperature can be much higher, but only for a short time. In general, the
model presented in the paper, after appropriate refinements (adaptation), should also work
in high-latitude conditions, since the decomposition of organic matter in arctic permafrost
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soils proceeds by the same mechanism as in low latitude conditions. In any case, the
model’s small adaptation with the usage of a regional dataset may be necessary, which is a
technical point.

The forecast of the greenhouse gas amount emitted from the controlled area soil
is generated on the basis of soil parameters (temperature, moisture) dynamics forecast.
The more accurate the dynamics prediction of these parameters, the more accurate the
emitted soil greenhouse gas amount forecast. It is objectively difficult to obtain a long-term,
qualitative forecast regarding the dynamics of soil parameters, but it is quite possible
during the few-week forecast interval.

In addition to the control of soil greenhouse gas emissions, the proposed approach of
forming a forecast in the form of an Igg(·) functional, subject to changes in the parameters
of the regression model and the measurement model, can be used in other conditions.
In particular, the suggested approach may be used for the problems of controlling and
forecasting carbon dioxide emissions in the areas of heavy industrial activity, for example,
in the areas of large sea ports [17]. Since in this case the mechanism of carbon dioxide
generation is different, the regression arguments will not be soil parameters, but a different
set of parameters related to the specific features of a particular controlled area. For example:
intensity of works and other industrial activity, time of year, time of day, type of works, and
industrial activity, etc. Similarly, the proposed approach can be used as part of a subsystem
for monitoring CO2 emissions in other industrial applications [18–21].

The proposed hardware-software approach can be used to create simultaneously low-
maintenance and energy-autonomous systems or controlling and forecasting of greenhouse
gases in the cryolithozone. In order to improve the accuracy of quantitative prediction, we
are planning a series of in-situ full-scale experiments of the multimodal sensor network.
The purpose of these tests is to improve the approximate dependence (2) on the approxi-
mation quality itself, considering that the accuracy of greenhouse gas emissions intensity
forecasting in the region significantly depends on it.
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